If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7=-16x^2+30x+6
We move all terms to the left:
7-(-16x^2+30x+6)=0
We get rid of parentheses
16x^2-30x-6+7=0
We add all the numbers together, and all the variables
16x^2-30x+1=0
a = 16; b = -30; c = +1;
Δ = b2-4ac
Δ = -302-4·16·1
Δ = 836
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{836}=\sqrt{4*209}=\sqrt{4}*\sqrt{209}=2\sqrt{209}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-2\sqrt{209}}{2*16}=\frac{30-2\sqrt{209}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+2\sqrt{209}}{2*16}=\frac{30+2\sqrt{209}}{32} $
| x-13=1+8x | | 8b-9=9b+2 | | x-13=2+8x | | Y+10=64+-1y | | -13=3n+17 | | 63+x+5=180 | | Y=-18x^2+203x+6 | | 2x-1÷3=-5 | | 3x+14=2(2x+2) | | x-2=8+8x | | a/6+4=3 | | 22-f=2f | | 3x+14=2x+2 | | (19^2)^x=19^10 | | 3x+14=2x+@ | | -(4x+4)=-8(x+5) | | x-2=13+8x | | 60+55+y=180 | | x-8=13+1 | | 8+g=4g | | 14+4x=6x+7(-6x+2) | | b/7+2=-1 | | (27)^3x=81 | | x-(-)1=13+2 | | 11p+3-2p+7=0 | | m^2=5m=6=0 | | x/2=3+x-7/9 | | (27)^3x=-40 | | x-1=13+2 | | x-8=13+2 | | 5x+20=2(4x+4) | | c=3.14*35 |